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Abstract: In order to deal with the complexity of the diagnosis of FCC pilot plants,
several modelling approaches were developed, combined and tested on-line. Two causal
modelling approaches were investigated based on control loop analysis and on the
detailed equations describing the behaviour of the process. These models are used on-line
to detect faults on process variables. Information on the components of the system allows
faults on physical components to be isolated. Then using expert knowledge, information
is given to the operator. This paper details the different kinds of models, their use in the
diagnosis module and a case study on the IFP FCC pilot plant. This work is conducted as
a part of the Chem project1. Copyright © 2002 IFAC
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1. INTRODUCTION

The FCC (Fluid Catalytic Cracking) refinery process
contains a physical loop generated by the catalyst
circulation in the different components. This makes
the understanding of the spreading of faults very
complex. Furthermore, the FCC pilot plant is
representative of the increasing complexity of highly
automated modern plants (89 sensors and 53
regulators). In spite of this complexity, a model-based
diagnosis approach was chosen because it ensures
completeness of the diagnosis and means that a
physical explanation of the diagnosis can be given to
the operators (Isermann and Ballé, 1997).

1 CHEM: “Advanced Decision Support System for
chemical/petrochemical processes” Project is funded by the
European Community under the Competitive and Sustainable
Growth programme of the Fifth RTD Framework Programme
(1998-2002) under contract G1RD-CT-2001-00466. See
www.cordis.lu or www.chem-dss.org

A causal model is particularly appropriated to
complex processes because it is an explanatory tool
for supporting fault detection and isolation.
Moreover, it can be easily modified.
During normal behaviour, a causal model describes
qualitatively and quantitatively the influences among
process variables. A possible representation of a
causal model is a causal graph made of nodes and
directed arcs. Nodes represent variables and arcs
represent influences among variables. The
information carried by the arcs can be purely
qualitative (signs of influence for instance) but it can
also be quantitative: gains for a static representation
or transfer functions to take time into consideration
(Leyval, et al., 1994) (Travé-Massuyès and Milne
1996).
In this paper, a quantitative transfer function is
associated with the arcs. Given a variable x that
influences a variable y, value for y can be generated
either based on a model value for x (simulation) or
based on a measured value for x (prediction). Values
are propagated from node to node easily.
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Section one presents two causal modelling
approaches. The first one is based on classical first
principle models and produces a deep model. The
equations need to be rearranged to obtain a causal
ordering (Iwasaki and Simon, 1986). The second one
focuses on control loops analysis. Representation of
control loops and generation of generic transfer
functions are considered.
Section 2 details the diagnosis module. It can be
divided into three sub-modules for fault detection,
isolation and identification (Isermann and Ballé,
1997).
First, symptoms are generated by comparing the
causal model predicted outputs with the measured
values. (Montmain and Gentil, 2000).
Secondly, the isolation module determines a list of
suspected physical components. Each arc of the
causal model is connected to a set of components.
This qualitative knowledge is used by a hitting set
algorithm to isolate the source component (Cordier
and al, 2000).
Finally, the knowledge based module, generates
operator messages. Each physical component is
associated with qualitative models of abnormal
behaviour containing human operator knowledge
about this component. When a component is
suspected to be abnormal then its models of abnormal
behaviour are analysed to generate more information
to the operator.
Section 3 describes the application of this
methodology to a part of the FCC pilot plant. The
advantages and drawbacks of a deep causal model
and an expert causal model are compared and a
complete scenario is described.

2. CAUSAL MODELLING

2.1 Description of modelling approaches

As described in (Heim and al, 2002) the following
steps are required to generate a deep causal model:
1) Identification of the physical system with respect

to its environment (exogenous phenomena),
2) Division into sub-systems,
3) Assignment of a configuration to each sub-

system,
4) Identification of the set V of variables required

to describe the system,
5) Identification of the set R of physical relations

among those variables,
6) Connection of each relation to physical

components,
7) Determination of causality (application of a

causal ordering algorithm),
8) Reduction (elimination of non measured

variable),
9) Approximation (elimination of negligible

phenomena),
10) Quantification (identification of transfer function

parameters).

When dealing with the deep approach, a classical first
principle model is used at step 5. Therefore equations
are explicitly known.
The bipartite graph G=(V ∪ R, A) is defined, where
A is the set of influences. The causal ordering (step
7) arises from determining a perfect matching in G
(Travé-Massuyès and Pons 1997).
On the opposite, the expert approach represents the
system from a control point of view, starting with the
description of the main control loops and adding
incrementally the representation of secondary control
loops or disturbances.
Fig. 2 shows the causal graph related to the control
loop described in Fig. 1. Set-point SP acts on the
manipulated variable MV via the controller R. MV
and disturbances D act on the regulated variables RV
via process H.

Fig. 1. Regulation loop

The major drawback of this representation is the
double link between RV and MV, that creates the
indefinite looping of the influences. A way to break
this loop is to use the causal representation shown in
Fig. 2. This causal graph explains the modification in
RV or MV due to modifications of SP or D.

Fig. 2. Loop elimination

This representation can be extended to more
complicated cascaded control loops (Heim and al,
2000).
Transfer functions in this last representation can be
computed easily with some reasonable hypotheses. F1
is the closed loop transfer function between SP and
RV and F2 is the open loop transfer function of the
process between MV and RV. They are assumed to
be known by the process expert and have the simple
form described in (1).This approximation is justified
in the application described in §3.
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where parameters are a gain g, a delay d, a time
constant T and the order n.
The influence of D on RV is described by the generic
transfer (2). The transfer functions between SP or D
and MV differ only by their sign and are represented
by the generic transfer (3).
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2.2 Deep and expert approach comparison

Steps (1) to (5) and step (10) are common to the
expert and to the deep approach. In the expert
approach causality is automatically deduced from
causal loop representation (Fig. 2). In the deep
approach steps (7) to (9) are necessary to determine
causality and simplify the model. Step (6) is common
to the two approaches and is necessary to isolate
faults on physical components (cf. 3.2)
•  In the deep causal model, the physical equations
that rule the system must be known. In the expert
causal model only behavioural relations are known.
As the deep causal model contains more knowledge
than the expert causal model, the diagnosis is
therefore more complete.
•  The expert causal model can be obtained rapidly
describing only influences of set-points on
manipulated and regulated variables. It can be refined
adding influences of disturbances on these variables,
then steps (7) to (9) become necessary. The deep
causal model requires a long modelling time.
•  To quantify the expert causal model, closed and
open loop experiments have to be carried out in order
to obtain the parameters of transfer functions F1 and
F2. F1 can also be obtained directly from F2 when
the controller R is known.
•  To quantify the deep causal model, closed and
open loop experiments also have to be carried out. As
parameters often appear in more than one equation,
the identification task is less time consuming than in
the expert approach.
•  The deep causal graph ensures the completeness
of the list of components associated with influences.
Elementary relationships are used to describe the
process, therefore the set of components associated
with an arc is minimised. With the expert causal
graph approach the completeness of the diagnosis is
assured only when all the disturbances on the
variables are known.
•  Relationships used in the expert causal model are
not elementary. Therefore the list of components
associated with the influences is not minimised. For
instance the influence of SP on RV is associated to
the controller R (c.f. Fig. 1), the process P and the
sensor RV. In the deep causal model, description is
based on elementary relationships, therefore R
appears in one relation and H in another relation.
Distinction between a fault on R and a fault on H is
then possible.

3. DIAGNOSTIC MODULE

3.1 Fault detection and isolation on process
variables

The causal model is used for fault detection on a
process variable. Let Yi(t) be the measured value of
each node Yi of the causal graph. The causal model
provides a simulated reference Yi(t)* and a predicted
reference Ŷi(t). The simulated reference represents
the value of a node computed from the set-points and

the exogenous disturbances acting on the process.
The predicted reference represents the value of a
node computed from the measured values of the
direct antecedent nodes. For example, in Fig. 5, the
simulated reference of F1 is obtained from SP and
SF1 and the predicted reference of F1 is obtained
from P and OPV1. With these two values, two
residuals are defined by comparison with the variable
measurement:

(t)Y - (t)Y)( *
ii=trYi (4)

(t)Ŷ - (t)Y)( ii=tYiλ (5)

The global residual rYi(t) and the local residual λYi(t)
are used for fault detection and isolation on process
variables. The causal diagnostic methodology
consists in deciding for each node if the fault is local
(and thus explains all the other observed
discrepancies) or if the fault is upstream (and is thus
explained by the fault on another antecedent
variable).
This is done by testing the coherency between the
measurements and the model with a logical
reasoning. The results of a Boolean reasoning on
these residuals are shown in Table 1. In this table, “1”
indicates that the value of the residual is greater than
a threshold and “0” that the residual is smaller than
this threshold.

Table 1 Boolean reasoning on residuals

Let rn,Yi(t) and λn,Yi(t) be the normalised global and
local residuals respectively given by (6) and (7).
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Threshold values on residuals aYi and bYi, can be
deduced from alarm thresholds on Yi. Parameter aYi
is the highest accepted value for the global residual
and parameter bYi is the highest accepted value for
the local residual. The gradual evolution of rn,Yi(t)
and λn,Yi(t) from 0 to 1 characterises the evolution of
the variable from a normal state to an undesirable
state. This transition is translated in terms of a colour
grade in the user interface. rn,Yi(t) is used to colour
the contour of the nodes: the contour of the node is
red when rn,Yi(t) = 1 and green when rn,Yi(t) = 0. The
arcs influencing a variable are red if λn,Yi(t) = 1 and
green if λn,Yi (t) = 0. In between, transition colours
are used to visualise residual evolutions.
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3.2 Fault isolation on physical components

Each relation of the causal graph is associated with
one or several physical component(s). Associating
influences with physical components enables the fault
on physical components to be isolated. A component
of the physical system is associated with a
relationship, if and only if, this relationship
determines its (or part of its) behaviour. For instance,
the influences P->F2 and OPV2->F2 (see equation 8
and Fig. 5) are both associated with the valve V2.
Therefore, if V2 has a normal behaviour, then F2
must be consistent with P and OPV2. On the other
hand, if the residual λF2 is high, then V2 is suspected
to have an abnormal behaviour. When a local fault is
detected on a variable, then the set of components
associated with the arcs between this variable and all
the parents of this variable determine a conflict. A
conflict is a set of components, at least one of which
behaves abnormally. Hitting set reference algorithm
is used to isolate faults on components. (Minimal)
diagnoses can be generated from (minimal) conflicts
using a hitting sets algorithm. A diagnosis is hence a
set of components such that its intersection with all
the conflict sets is not empty. In this paper the
assumption is made that a fault always manifests
itself.

3.3 Knowledge based fault identification

When a physical component is suspected, the aim of
this module is to refine the diagnosis about this
component using a knowledge base about its
abnormal behaviour. To complete this task, each
physical component is associated with models of
abnormal behaviour obtained from human operator
knowledge. This model takes the form of an event-
tree model (Fig. 3). Given a component suspected by
the previous isolation module 3.2), signals that
constitute symptoms, characterising faults, on this
component are analysed.
Symptoms and faults are symbolised by objects. The
relationship between the origin of the fault and the
symptom are symbolised by directed arcs between
objects, from symptoms to faults (Fig. 3). Parameters
qualify symptoms (variable identity, amplitude,
frequency ...). A fault can be determined by different
symptoms, therefore symptoms are linked to faults
using logical tests (AND, OR).
A message is sent to the operator interface when
diagnosis can be refined using the expert knowledge.
The process history, from records of maintenance and
repairs, constitutes a source of heuristic information.
Each fault is characterised by numerical symptoms or
observed qualitative symptoms. Numerical symptoms
are used to determine automatically possible fault
origin(s). Tendencies (increases , decreases ),
shapes (pulse & , oscillation , steps & )
and comparison (high >, and low <) are detected
through signal analysis.
If there are negligible and complicated phenomena
that are not modelled in the causal model, model of

abnormal behaviour can be used to refine diagnosis
of those phenomena. Consequently variables that are
analysed in the third module are those represented in
the causal model but also other measured process
variables.
Qualitative symptoms (odour, smell, colour, noises,
vibration ...) can be provided in the messages to the
operator interface and can be analysed by the human
operator to confirm the diagnosis physically.

Fig. 3. Qualitative abnormal model structure

4. APPLICATION TO A PART OF THE FCC
PILOT PLANT

The diagnostic system was implemented with the real
time G2 software by Gensym. G2 employs an object
oriented methodology that makes it easy to modify a
causal graph by creating new arcs and nodes.
This section presents the application of the two
approaches (deep and expert) to a part of an FCC
pilot plant. A real data based scenario of abnormal
behaviour is finally presented.
An FCC process is a refinery process which receives
multiple feeds consisting of high boiling point
components from several other refinery process units.
It cracks these streams into lighter components. It is
composed of many subsystems (two regenerators, a
reactor, a separation column, pipes, valves ...). The
catalyst circulates in a physical closed loop: it goes
from the stripper to the 1st regenerator then to the 2nd

regenerator and finally comes back to the stripper.
The feed is put in contact with the catalyst, and
immediately, catalyst and reaction products fall into
the stripper. The FCC pilot plant which is about 15
meters high has exactly the same components as a
real FCC process.
A causal model of the whole FCC pilot plant was
developed. The methodologies presented above have
been tested on real data from an FCC pilot process
and are at present being tested on-line.
These methodologies are applied on the sub-system
illustrated by Fig. 4. It is composed of the tank T1
(first regenerator) and two valves V1 and V2. T1
contains essentially nitrogen at pressure P and at
temperature T. Nitrogen input flow is F1 and output
flow is F2. A controller RV2 acts on V2 to maintain P
at its set-point SP. A regulator RV1 acts on V1 to
maintain F1 at its set-point SF1.

Fig. 4. Regenerator sub-system
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4.1 Deep approach

Physical relations that rule the studied system are
given by explicit equations (8) to (12). Only the
pressure balance is considered. R1 and R2
respectively represent the transfer functions of
regulators RV1 and RV2. Disturbances T, PNNT and
Patm are not measured and will thus not be considered
in the causal graphs presented later: they are
eliminated from the causal model at step 9 in § 2.1.
NNT is the nitrogen network. With:
F1,F2 moles/s, P pressure (Pa), T temperature (K),
Patm atmospheric pressure (Pa), PNNT nitrogen
network pressure (Pa), Ts sampling time (s), V
volume of T1 (m3), OPVi=1,2 is the opening value for
Vi (%), f and g non linear relationships.

( )22
21 )((** atms PPOPVfFT

V
T

dt
dP −−=  (8)

( )22
11 )( NNTPPOPVfF −=      (9)

( )22
22 )( atmPPOPVgF −=     (10)

)( 1111 FSFROPV −=             (11)
)(22 PSPROPV −=              (12)

The application of the deep approach methodology to
equations (8) to (12) provides the causal graph in Fig.
5. Each arc of the causal graph is associated to a
(some) physical component(s). This association,
illustrated in Fig. 5, is used for diagnostic purposes
(cf. § 3.2). In Fig. 5 association of influences with
sensors is not mentioned. To ensure the finest
diagnosis, each arc must also be associated with the
sensors involved (for instance F1->P is associated
with both sensors F1 and P).

Fig. 5. Deep causal graph

4.2 Expert approach

The expert approach is simple. First it allows a
systematic and simplified representation of the
control loop (cf. Fig. 2). Second it is not necessary to
describe explicitly the physical equations that rules
the process. Indeed it is sufficient either to ask the
process expert which variables are disturbances of the
manipulated value (and thus of the regulated value)
or ask the expert for formal relations that rules the
process. In this section the influences of the set-point
will first be considered. Then the influences of the
disturbance will be dealt with.
First set-point SF1 influences both F1 and OPV1 and
set-point SP influences both P and OPV2. Parameters
of the transfer functions SF1->F1 and SP->P (relation

named F1 in § 2.1) can be easily obtained by
performing closed loop steps on SF1 and SP.
Performing open loop steps on OPV1 and OPV2
gives the relation F2 between OPV1 and F1 and
between OPV2 and P. Then parameters of transfer
functions SP1->OPV1 and SP->OPV2 (F1/F2) are
obtained. At this step of the expert approach the
numerical influences of the set-points are known and
the causal graph in Fig. 6 can be used to generate
variable values.
It is now necessary to identify which variables are
disturbances for F1, OPV1, P and OPV2. If no
physical knowledge is available about the process,
then it is impossible to identify those disturbances. If
physical relations (8) to (12) are formally known or if
a process expert is able to determine which variables
are disturbances, then the expert causal graph in Fig.
6 is obtained.

Fig. 6. Expert causal graph

Arcs {P->F2; OPV2->F2} are associated with the
same components than those mentioned in Fig. 5.
Arcs {SF1->F1; SF1->OPV1; P->F1; P->OPV1} and
{SP->OPV2; SP->P; F1->P; F1->P} are respectively
associated with {T1; V1; RV1, NNT} and with {T1;
V2; RV2}.

4.3 Scenario description

An expert causal model was first tested rapidly for
the FCC pilot plant fault diagnosis. It was sufficient
to isolate faults on certain components. It gave
encouraging results but was however limited because
of its simplified process representation. To provide a
more precise diagnosis, a deep causal model was
built. The following scenario is thus based on the
deep causal model.
The pipe between T1 and valve V1 that controls P is
blocked. In Figure 5, we can see that faults are
detected on OPV2, OPV1, F1, F2 and P. Faults are
isolated on F2 and P.
Fig. 8 presents the whole implemented FCC pilot
plant causal graph at the end of the scenario. Faults
are detected on the grey  variables in Fig. 8. Bold
arcs influence variables on which faults are isolated.
•  Arcs that influence F2 are associated with {V2}
and with {P sensor, value OPV2}, therefore, the set
{V2, P sensor, value OPV2} determines a first
conflict. Arcs that influence P are associated with
{T1, V2} and with {P sensor, F1 sensor, FOR1
sensor, value OPV2}. That is the second conflict. In
this scenario, P sensor is not considered to be
abnormal because the local residual of DPC in Fig. 8
is zero. Minimal diagnoses are thus {V2} and {value
of OPV2}.
•  Historical faults known by the operator about V2
are: an internal leakage of V2, an external leakage of
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V2 and a blockage of V2. The only historical fault
known about the value of OPV2 is the
Intensity/Pressure converter of V2 being out of order.
Abnormal behaviour model associated with a
blockage of V2 is illustrated in Fig. 7. At the
beginning of the scenario, P and OPV2 increases and
at the end of the scenario, P and OPV2 are high.

Fig. 7. Qualitative model of abnormal behaviour

This scenario occurred twice in real time. The
beginning of the scenario cannot be exactly known. It
is impossible to determine when V2 began to block.
The only information that is available is measured
values P and F2. Here the beginning of the scenario is
arbitrarily chosen when the λn,P(t)=1, cf.(7). During
the scenario, colours of nodes P and F2 slowly evolve
from green to red for 40 minutes long. Without the
diagnostic module, the fault was not isolated until the
security components automatically stopped the
process. After 5 minutes of abnormal behaviour, the
diagnosis module isolated the fault. This illustrates
the necessity of such modules.
Initially, the third module was tested on line, alone on
the FCC pilot plant. The expert knowledge about
each component was analysed simultaneously and
many messages were sent to the operator to inform
him of the findings. Focusing this module only on the
components that are suspected to be faulty by the
isolation module makes its use much more relevant.
An average of three fault-trees for each component
were built.

5. CONCLUSION

This paper presents a diagnostic module for an FCC
pilot plant. Two causal modelling approaches were
investigated and compared: a deep approach based on
a precise description of the process with a first
principle model and an expert approach based on
control loop analysis. When using the expert
approach, the diagnostic module is weaker but it can
be obtained very quickly. The diagnostic module
based on three complementary techniques was
detailed. First, the fault detection module, based on a
causal model of normal behaviour generates
symptoms for each measured variable. Then, the
isolation module generates a list of suspected
physical components. Finally, the third module
refines the diagnosis using historical qualitative
operator knowledge of abnormal behaviour.
This diagnostic module was tested on 15 scenari
based on real data and is at present being tested on
line. It gives very encouraging results providing early
and accurate detection. Within the scope of Chem, it
is planned to integrate other techniques in the system
in order to build a complete and integrated
supervision application.

Fig. 8. FCC deep causal graph
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